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Numerical simulation of the unsteady behaviour
of cavitating �ows
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SUMMARY

A 2D numerical model is proposed to simulate unsteady cavitating �ows. The Reynolds-averaged
Navier–Stokes equations are solved for the mixture of liquid and vapour, which is considered as a
single �uid with variable density. The vapourization and condensation processes are controlled by a
barotropic state law that relates the �uid density to the pressure variations. The numerical resolution is
a pressure-correction method derived from the SIMPLE algorithm, with a �nite volume discretization.
The standard scheme is slightly modi�ed to take into account the cavitation phenomenon.
That numerical model is used to calculate unsteady cavitating �ows in two Venturi type sections.

The choice of the turbulence model is discussed, and the standard RNG k–� model is found to lead
to non-physical stable cavities. A modi�ed k–� model is proposed to improve the simulation. The
in�uence of numerical and physical parameters is presented, and the numerical results are compared
to previous experimental observations and measurements. The proposed model seems to describe the
unsteady cavitation behaviour in 2D geometries well. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: cavitation; two-phase �ow; unsteady �ow; turbomachinery; barotropic state law;
pressure correction method

1. INTRODUCTION

Cavitation is the vapourization of a liquid when the static pressure decreases below its vapour
pressure. This phenomenon usually arises in �ows around solid bodies and it strongly a�ects
the �ow �eld and the neighbouring structures. In hydraulic machines, for example, several
low-pressure areas (suction side leading edge of the blades, tip leakage, separated �ows near
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Figure 1. Unsteady cavitation behaviour in a venturi type duct: 3 di�erent stages of cloud
shedding process (view from Reference [1]).

the shroud) are susceptible to cavitation. Apparition of vapour induces modi�cations of the
blades load, and strong forces acting on the pump components. If the vapour=liquid structures
grow signi�cantly, they can lead to substantial performance losses. The collapse of the vapour
structures is also associated with noise and erosion, resulting in supplementary maintenance
operations. These e�ects mainly depend on the time-averaged shape and location of the two-
phase structures.
Moreover, the shape and volume of these vapour inclusions usually �uctuate in time. This

unstable behaviour is directly associated with the perturbations occurring in pumps, such
as vibrations, �ow rate �uctuations and compressibility e�ects. Therefore, understanding of
unsteady two-phase �ow structure of cavitation is important for the design of turbomachinery
and hydraulic plants.
According to experimental observations, cavitation sheets that appear on solid bodies are

very complex: their structure (smooth or rough, stable or unstable) depends on the shape
and roughness of the surface (Venturi, hydrofoil, blade) and on the operating conditions. A
stable cavity is characterized by a length almost constant in time, although the closure region
always �uctuates. On the contrary, an unstable cavitation sheet often adopts a cyclic behaviour
(Figure 1): the cavity attached to the solid body grows up to the generation of a re-entrant
jet. This one is mainly composed of liquid, which �ows upstream along the solid surface and
leads to the break-o� of the downstream part of the cavity. The resulting cloud of vapour is
then carried away by the main stream, until it enters a higher-pressure zone and collapses.
The remaining part of the attached cavitation sheet re-expands and a new cycle starts.
Whatever the case—stable or unstable—the closure region of the cavity is a very complex

two-phase structure, which is always unsteady at some scale.
Several physical and numerical models have been developed to investigate stable cavities.

They usually consist of describing the vapour=liquid interface as a stream sheet at constant
static pressure equal to the vapour pressure. The shape is obtained by solving an inverse
problem. Previous numerical and theoretical models of cavitating �ows on pumps or propeller
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blades proposed for example by Kueny et al. [2], Kinnas and Fine [3], Von Kaenel et al. [4],
Peallat and Pellone [5] are based on this kind of numerical simulation of steady cavitation
sheets. In a time-accurate formulation, this type of model is able to simulate the early stage
of the re-entrant jet formation [6, 7], but not the complete vapour cloud shedding process,
since it becomes quite di�cult to manage several vapour=liquid interfaces inside the �ow
�eld. Therefore, these models predict only the mean shape of cavities and do not adapt to
unsteady cavitation.
To simulate unsteady phenomena, such as pulsating cavities and vapour cloud shedding, an

alternative approach is to model the cavitating liquid as a homogeneous two-phase mixture of
liquid and vapour. A classical assumption in this case is to neglect the possible slip between
the two phases, which leads to a single-phase �uid whose density may vary over a large
range from pure liquid to pure vapour. The main numerical problem in multidimensional
simulations is the simultaneous treatment of two very di�erent �ow conditions: two almost
incompressible ones (pure liquid and pure vapour), and a highly compressible one in the
transition between vapour and liquid. Most of the methods have serious di�culties when the
ratio �v=�l is lowered. This approach has been investigated in di�erent ways:
Delannoy and Kueny [8] proposed a formulation that strongly links the mixture density to

the static pressure: they use a barotropic law �(P), which describes the mixture density both
in the incompressible parts of the �ow �eld and in the transition zone. This kind of model
has been applied recently by Merkle et al. [9], Song et al. [10], and Hoeijmakers et al. [32].
They obtained satisfactory results for various types of geometry, such as Venturi type ducts
or hydrofoils.
Kubota et al. [11] relate the density evolution to the motion of bubbles in the �ow. A given

number of bubbles are settled at the inlet, and their evolution is governed by the Rayleigh–
Plesset equation according to the pressure �eld. It is assumed that the bubbles are spherical,
and remain not too close from each other. The void fraction is thus theoretically limited to a
small value, much smaller than the experimental ones. That approach has been widely devel-
oped since that time, in particular by Chen and Heister [12], Grogger and Alajbegovic [13].
Merkle et al. [9] and Kunz et al. [14] recently proposed a third development: they consider

two mass balance equations, one for liquid and one for vapour, instead of a single one for
the mixture. A vapourization=condensation term in these equations controls the mass transfer
between the two phases. The results are quite similar to the previous ones [9], but this
method has the advantage that it can take into account other non-condensed phases and the
time in�uence on the mass transfer phenomena.
Nevertheless, very few authors have obtained a complete description of the pulsating

behaviour of the cavitation sheet. The formation of the reverse �ow along the surface, result-
ing in the cavity break-o�, and the convection of the cloud of vapour downstream, remain
very di�cult to simulate.
Mainly two numerical methods have been developed to simulate unsteady cavitation. The

major di�culty lies in the requirement to compute an unsteady �ow �eld of quasi-incompre-
ssible �uids (pure liquid or vapour) in association with a very high compressibility in the
phase change regions.
The �rst method is based on the adaptation of compressible time-marching algorithms to low

Mach numbers. This kind of resolution was originally devoted to highly compressible �ows.
In the case of low-compressible or incompressible simulations, its e�ciency was originally
observed to decrease dramatically. This well-known problem has been addressed by many

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:527–548



530 O. COUTIER-DELGOSHA, J. L. REBOUD AND Y. DELANNOY

authors [15, 31] and solved by introducing a preconditioner. It consists in multiplying the
pseudo-time derivatives by a preconditioning matrix that modi�es the equations and accelerates
the convergence, without altering the result accuracy provided each time step is correctly
converged. Merkle et al. [1993] implemented it in an implicit algorithm, and they obtained
satisfactory results, either with a barotropic law or a two mass equations model. The rate �v=�l
was lowered until 0.01. Hoeijmakers et al. (1998) presented a similar development with a
simpler preconditioner applied on an explicit algorithm: �v=�l could not be decreased in their
case lower than 0.05. Kunz et al. [14] recently presented some promising results obtained
with this algorithm, using a three-�uid method based on two mass transfer equations and
including the presence of a non-condensable gas.
An alternative numerical treatment, particularly well adapted to incompressible �uids com-

putations, is the pressure correction method, based on the SIMPLE scheme initially proposed
by Patankar [16]. Delannoy and Kueny [8] adapted this algorithm to cavitation by considering
the mass equation as a transport equation for density, which depends on the pressure through
a barotropic state law. This method, �rst developed for inviscid �uids, considers a physi-
cal sound celerity in the vapour=liquid transition and, thus, captures the very strong density
gradient in the mixture.
This paper presents a two-dimensional code performing unsteady cavitating simulations. The

time dependent Reynolds-averaged Navier–Stokes equations are solved on structured meshes,
in association with the cavitation model initially developed by Delannoy and Kueny [8]. Sev-
eral physical modi�cations have been investigated by Reboud and Delannoy [17], Reboud et
al. [1], Coutier-Delgosha et al. [18, 30] to increase the range of applications and improve the
physical model. Moreover, some numerical developments have been performed to increase
the code e�ciency and reduce the numerical errors. The model has been validated on vari-
ous geometries, such as Venturi type sections, hydrofoils, or blade cascades, and the results
showed a good general agreement with experiments. Their speci�city is an especially reliable
simulation of the cyclic behaviour of unsteady cavitating �ows.
Sections 1 and 2 are devoted to the physical approach used in the code and to the main

features of the numerical method, particularly the special treatment induced by the two-phase
�ow model. Validation of the model is performed through unsteady computations of cavitat-
ing �ows in Venturi type sections, whose experimental behaviour has been studied previously
[1, 19, 20]. The sections were designed to simulate the pressure �eld along the suction side
of an inducer blade. Two geometries are considered, namely a 4◦ and a 8◦ divergence angle
Venturi, the second one leading to a pronounced unsteady behaviour. The details of their
geometry are presented in Section 3. The in�uence of the numerical parameters is studied
in the case of the 8◦ divergent angle, and the results are presented in Section 4. Quantita-
tive comparisons with experimental measurements are analysed in Sections 5 and 6 for both
geometries.

2. PHYSICAL MODEL

Generally, two-phase �ow models are based on the assumption that the �uid is present in the
computational domain both as liquid and as vapour. The vapour is characterized by a density
�v, and the liquid by a density �l. On each cell of the mesh, the unknowns are calculated
for each phase by averaging them on the volume occupied, respectively, by liquid and gas
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Figure 2. The barotropic state law �(P) for water and two di�erent values of the
minimum speed of sound Amin in the mixture.

[21]. Neglecting the thermal e�ects, the number of balance equations in 2D is six because
of the two phases. These equations govern the behaviour of the two-phase structures larger
than the cells, whereas the smaller structures are modelled by closure laws, which empirically
calculate the �uxes of mass and momentum between the two phases. The di�culty of this kind
of approach is to evaluate the mass and momentum transfer terms in the balance equations.
In the present work, we apply a single-phase �ow model that considers the vapour=liquid

mixture as a single �uid [8] characterized by its density �. When it equals the liquid one
�l, all the cell is occupied by liquid, and if it equals the vapour one �v, the cell is full of
vapour. Between these two extreme values, the cell is occupied by a two-phase mixture that
is still considered as one single �uid. The void fraction � is de�ned as the local ratio of
vapour contained in this mixture: �=(�− �l)=(�v − �l). The �uid density is controlled by a
barotropic state law �(P) (Figure 2) that links the �uid density variations to the local static
pressure evolution: when the pressure is slightly higher or lower than the vapour pressure,
the �uid is supposed to be purely liquid or purely vapour, according respectively to the Tait
equation [22] and the perfect gas law.

P
�
=Constant (Perfect gas law for the pure vapour; neglecting thermal e�ects)

�
�ref

= n

√
P + P0
PTref + P0

(Tait law for the pure liquid)

where PTref and �ref are reference pressure and density.
(Presently, PTref =Poutlet, and for water: �ref =�l, P0 = 3× 108 Pa and n=7).
These two quasi-incompressible states are joined smoothly in the vapour pressure neighbour-

hood, which results in a simple description of the vapourization and condensation processes.
The state law presented in Figure 2, close to the one proposed by Jackobsen [23], is char-
acterized mainly by its maximum slope 1=A2min, where A

2
min = @P=@�. The parameter Amin can

thus be interpreted as the minimum speed of sound in the mixture. This parameter depends
on the two-phase structure of the medium and remains an adjustable parameter of the model.
Concerning the momentum �uxes, our model assumes that locally (in each cell), velocities

are the same for liquid and for vapour: in the mixture regions gas structures are supposed to
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be perfectly carried along by the main �ow. That hypothesis is often used for the problem
of sheet-cavity �ows where the interface is considered to be in dynamic equilibrium [9, 14].
The momentum transfers between the phases are thus strongly linked to the mass transfers,
which are treated implicitly by the state law without any supplementary assumptions.

3. NUMERICAL TREATMENT

The model is developed in two dimensions. We detail here the numerical treatment with a
special emphasis on the cavitation process.

3.1. Mesh

We use curvilinear orthogonal co-ordinates and a staggered mesh. The mesh generation is
based on the method of Ryskin and Leal [24], optimized for our particular applications [25].

3.2. Governing equations

The physical model presented above leads to one scalar equation for the mass conservation and
one vector equation for the momentum conservation. The time-dependent Reynolds averaged
Navier–Stokes equations can be written in Cartesian co-ordinates in an absolute stationary
frame of reference in the following non-conservative form with the Boussinesq approximation.

�
@ux
@t
+ �ux

@ux
@x

+ �uy
@ux
@y

=−@P
@x
+ �

(
@2ux
@x2

+
@2ux
@y2

)

�
@uy
@t
+ �ux

@uy
@x

+ �uy
@uy
@y

=−@P
@y
+ �

(
@2uy
@x2

+
@2uy
@y2

)

@�
@t
+
@
@x
(�ux) +

@
@y
(�uy) = 0

�= F(P; Pvap)

(1)

As we work in the orthogonal frame of curvilinear co-ordinates (�; �), we �nally obtain by
projection in this frame the following equations, written in the general form [26]:

S
@
@t
(��) +∇�

(
�u�− �� @�@�

)
+∇�

(
�v�− �� @�@�

)
= S�

�=F(Cp; �) (2)

where � stands either for 1, u, or v, �� is the di�usion coe�cient, u and v are the velocity
components along co-ordinates � and �, respectively, ∇� and ∇� are the physical components
of the divergence operator along the curvilinear co-ordinates, S� is the source term, Cp is the
non-dimensional pressure coe�cient, and � is the cavitation number.

3.3. Spatial discretization

The �nite volume method is applied for the space discretization. Each equation is integrated
locally on its own control volume based on the staggered grid to avoid pressure oscillations.
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The pressure and the density are calculated at the center of the cells, while the velocity
components u and v are located, respectively, on the western and the southern faces of each
cell.
The divergence term in Equation (2) is �rst turned into a sum of �uxes through the control

volume faces. The di�usive terms are then discretized in a purely central manner, while the
convection terms are estimated through the HLPA scheme proposed by Zhu [27]. This is a
second-order scheme, which locally switches to �rst order, to prevent numerical oscillations
in critical high pressure gradient areas. This scheme leads to the occurrence of both �rst-order
and second-order terms: it is written like an upwind scheme, completed by a second-order
term taken at the previous iteration. This last term is thus explicit, and it is added to the right
hand side of the algebraic system.
Although the simulation is two-dimensional (only two components u and v of the velocities

are considered), the cells are three dimensional. Their width evolution throughout the com-
putational domain allows one to simulate the in�uence of radius in axisymmetric cases or to
take into account smooth variations of the stream sheet width.

3.4. Temporal discretization

Several numerical schemes of �rst and second order are available. An unconditionally stable,
�rst-order implicit scheme is usually applied, which corresponds to the following expression
for the time-dependent terms:

@(��)
@t

=
�n+1�n+1 − �n�n

�t
(3)

Time-step and scheme order in�uence have been investigated (see Section 4) to check that
the numerical errors induced by this discretization are acceptable. A second-order integration
scheme was thus also applied:

@(��)
@t

=
1:5�n+1�n+1 − 2�n�n + 0:5�n−1�n−1

�t
(4)

3.5. Turbulence model

A standard k–� RNG turbulent closure model [28], adapted for two-phase �ow simulations,
is used. The standard turbulence model considers a viscosity �=�t + �l

where �l is the laminar viscosity

�t =f(�)C�k2=� is the turbulent viscosity

C�=0:085

(5)

The standard function f(�)=� is for the general case of a single-phase �uid. An arbitrary
diminution of the turbulent viscosity in the two-phase regions was proposed to improve the
modelling of the unsteady self-oscillatory behaviour of sheet cavitation [1]. Therefore, we
introduced a modi�ed function f (Figure 3) of the form:

f(�)=�v + �n(�l − �v) with n¿1 (6)

The function f is then equal to �v or �l in the regions containing, respectively, pure vapour
or pure liquid, but it decreases rapidly toward �v for intermediate void ratios. Coutier-Delgosha
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Figure 3. Modi�cation of the turbulent viscosity.

et al. (2001) have shown that this arbitrary modi�cation of the model amounts to taking into
account e�ects of the vapour=liquid mixture compressibility on the turbulence structure.

3.6. Computational procedure

The numerical resolution must be adapted to both compressible �uids (to treat the vapour-
ization and condensation processes) and quasi-incompressible �uids (in pure liquid and pure
vapour areas). In compressible simulations, the pressure is usually linked to the velocity U
and the density � through the state equation. In incompressible simulations, this is not the case
anymore, since the equation of state becomes almost �=constant. Thus, we use a classical
pressure-correction method proposed by Patankar [16]. It is based on the SIMPLE algorithm,
modi�ed to include the k–� resolution and the cavitation treatment. Only the main features
are presented here, details can be found in Reference [25].
The algorithm is an iterative process. The resolution of each time-step is divided into

several iterations, which march the solution towards convergence. Each iteration is composed
of two successive steps. The velocities are �rst estimated by a resolution of the momentum
equations without any modi�cation of the pressure. Then, these values of u and v are corrected
through the resolution of a ‘pressure correction’ equation, in order to satisfy the continuity.
The cavitation process induces the following modi�cations:

• The density � is �rst calculated with the barotropic state law after the momentum equa-
tions resolution, as well as its derivative @�=@P.

• When the pressure correction dP is obtained, the density values are corrected:

d�=
(
@�
@P

)
dP (7)

A supplementary loop over the pressure correction step is then added inside each iteration
to check that the void ratio remains inside its physical range [0; 1].
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Figure 4. The coarse meshes of the two cases: (a) 8◦ angle and (b) 4◦ angle.

3.7. Boundary conditions

The boundary conditions are based on a system of dummy cells. Two rows of supplementary
cells are generated around the computational domain. By imposing the values of variables
in these cells, all standard boundary conditions are available: velocity, pressure, wall condi-
tion, connections (matching or non-matching), periodicity. The non-matching connections are
treated with an interpolation method especially adapted to our algorithm, and the details can
be found in Reference [18]. A multidomain procedure was also developed, for blade cascades
applications.
Classical incompressible type of boundary conditions are applied: imposed velocities at the

inlet, and an imposed static pressure at the outlet. Numerical studies have been performed
to improve these conditions, mainly by taking into account the test rig in�uence [33]. They
were not applied in the present application.

3.8. Unsteady treatment

In experiments, the classical cavitation test consists of setting initially a relatively high pressure
in the �ow �eld, for which no vapour appears. Then, the static pressure is decreased until the
desired cavitation number � is reached.
We developed a similar numerical procedure: �rst of all, a stationary step is carried out

with an outlet pressure high enough to avoid any vapour in the whole computational domain.
Then, this pressure is lowered smoothly at each new time-step down to the value corresponding
to the desired cavitation number. Vapour appears as the pressure decreases. The cavitation
number is then kept constant throughout the computation.

4. GEOMETRIES

Numerical simulations have been performed on two Venturi type sections whose divergent
angle is 8◦ and 4◦, respectively (Figure 4). In both cases, cavitation occurs at the Venturi
throat. The shape of the Venturi bottom downstream from the throat simulates the suction
side of an inducer blade with a beveled leading edge geometry [34] and a chord length Lref .
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These geometries were tested previously by Stutz and Reboud [19, 20] and the experimental
data are used in the present work to validate the numerical simulations.
According to experimental observations:

• The �rst geometry, with large convergent–divergent angles (18–8◦) leads to a cyclic
unsteady cavitation showing quasi-periodic �uctuations. Each cycle is composed of the
following successive steps: the cavity grows, and a re-entrant jet composed of a liquid=
vapour mixture �ows upstream along the Venturi bottom until the cavity breaks o�. The
cloud of vapour is then convected by the main stream, and it �nally collapses [19].

• The second geometry is characterized by small convergent–divergent angles (4:3◦–4◦)
and a smaller contraction ratio at the throat. In this case stable cavities are observed,
with only small-scale �uctuations in their downstream part [20].

These two behaviours are very di�erent, so the two Venturi type sections are adequate test
cases: the objective is to simulate e�ciently the two con�gurations, with the same physical
and numerical model.

5. VALIDATION TESTS

Validation tests were performed with the 8◦ divergent cavitation tunnel whose behaviour is
fundamentally unstable. Our reference simulation corresponds to an inlet velocity Uref = 7:2m=s
and a cavitation number �=2:4. These conditions lead experimentally to self oscillating cav-
itation with a visual length of the attached sheet cavity Lcav = 50 mm and a cloud shedding
frequency of 45 Hz. Twenty Tref of simulation are performed, where Tref is a reference time
corresponding to the time necessary for the �ow �eld to cover the length Lref = 0:23 m with
the speed Uref .

5.1. Turbulence model discussion

The unstable cavitating behaviour is not correctly simulated if we use a standard k–� RNG
turbulence model. In this case after a transient �uctuation of the cavity length, we obtain a
quasi-steady behaviour of the cavitating �ow and a complete stabilization of the cavitation
sheet (Plate 1). The resulting cavity length is too short compared to the experimental obser-
vations. Even when taking into account the liquid separated �ow downstream of the vapour
sheet as part of the cavity, the total length remains about 2 times smaller than the value
reported from the experiment. This result is not signi�cantly modi�ed if the mesh size or the
time step are changed.
To obtain a cavity length closer to the experimental one, the imposed cavitation number

must be reduced to about �=2:0. In that case, local comparisons are investigated with exper-
imental data obtained by double optical probes measurements. This technique and the results
are presented in detail in References [19, 20]. This is an intrusive captor, which allows mea-
surements of the local void ratio and the velocities of the two-phase structures inside the
cavitation sheet. Four data pro�les, whose position is indicated on Figure 5, are available.
The time-averaged and standard deviation values of void ratio � and velocity u are presented

for each pro�le on Figure 6. The dotted line corresponds to the experimental external shape of
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Figure 5. Data pro�les and cavity contour (� adjusted to obtain a cavity
length close to experimental observations).

Figure 6. Time-averaged and standard deviation values of void ratio � and velocity u
Comparison between numerical results (lines) and optical probes measurements (points).
Uref = 7:2 m=s, �exp = 2:4—Standard k–� model. (�num =2:0, adjusted to obtain a cavity
length corresponding to experimental observations) (cavity external shape in dotted line

from image processing). Ratio 3 between vertical and horizontal scales.

the cavity, deduced from visualizations. It shows the poor agreement between the numerical
and experimental results:

• The numerical mean void ratio is over-estimated in the upstream part of the cavity.
Calculations give a high void ratio (larger than 90%), abruptly falling to 0% in
the wake, while the measured void ratio never exceeds 25% and decreases slowly
from the cavity upstream end to its wake. The time-averaged velocities are also in-
correct in the cavitation sheet, since the re-entrant jet is not well predicted. On the other
hand, the mean velocity pro�les downstream of the cavity are in quite good qualitative
agreement with measurements.
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• The most important discrepancy with the experimental measurements concerns the �uc-
tuations: experimental standard deviation values are of the same order of magnitude as
the mean values; whereas, the numerical ones are zero, since the cavity is stabilized.

This poor agreement with the real con�guration seems to be related to an over-prediction
of the turbulent viscosity in the rear part of the cavity. As a matter of fact, the transient
analysis of the cavity behaviour obtained by non-viscous �uid calculations indicated that the
main problem in the turbulent �ow simulations consisted in the premature removal of the
reverse �ow along the solid wall: the re-entrant-jet was stopped too early and it did not result
in any cavity break o�.
This major discrepancy is probably partially linked to the classical limitations of the

k–� turbulence model in the case of separated �ows [29]. Moreover, the standard k–� RNG
model does not take into account the compressibility e�ects on turbulence, since it is devoted
to fully incompressible �ows. According to the adopted barotropic state law, in the mixture
vapour=liquid zones the sound celerity is very low, and the �uid is highly compressible (the
Mach number can be larger than 5). Several turbulence models have been tested by Coutier-
Delgosha et al. [30] in this con�guration, and the reduction of the e�ective viscosity obtained
in the compressible areas with a k–! model including compressibility e�ects [29] seems to
be of primary importance to simulate the cyclic cavitation behaviour.

5.2. Validation of the global cavitating behaviour with the modi�ed k–� model

We performed a �rst attempt to improve the simulation, simply by arbitrarily reducing the
turbulent viscosity in the low void ratio areas. This modi�cation, that was detailed in Section 2,
is applied with the parameter n=10, leading to a very quick decrease of the turbulent viscosity
as soon as the density decreases below the pure liquid one. It leads to substantial changes in the
simulation. The unsteady re-entrant jet seems now correctly predicted, and we obtain vapour
cloud shedding. Plate 2 presents the typical shape of the biggest attached cavity obtained in
this reference case.
The transient evolution observed during this unsteady calculation is presented in Plate 3.

Plate 3(a) illustrates at a given time and for each cross section of the Venturi type duct the
value of the minimal density present in the section. By comparison with Plate 1, it gives
information concerning the vapour cloud shedding process: the part of the cavity that breaks
o� clearly appears, and the �uctuation frequency can be easily calculated. Moreover, it also
supplies the maximum void ratio in each section. The two other curves (Plate 3(b) and (c))
represent, respectively, the total vapour volume and the inlet pressure evolutions.
The experimental self-oscillatory behaviour of the cavitation sheet is correctly simulated

with a �uctuating attached cavity whose maximum length is about 45mm (i.e. Lcav=Lref = 0:2,
cf. Plate 3). Its mean �uctuation frequency is estimated by FFT transform of the inlet pressure
signal after the initial transient. It equals 52 Hz ± 3 Hz. The length is now almost correctly
predicted, only 10% smaller than the mean experimental value of 50mm, while the oscillation
frequency is about 15% larger than the experimental one. Because the frequency of the self-
oscillation behaviour decreases when the cavity length increases, these two results might be
both improved by a small decrease in the imposed cavitation number.
The transient evolution is almost periodic. This behaviour is consistent with the experimental

observations, which mention a quite regular cavitation cycle whose frequency oscillates around
a central value [19, 20]. Although the present result (Plate 3) is quite regular, we
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Table I. Tested parameters.

Reference
Parameter Range value

Numerical parameters
Mesh dimensions (three sizes were tested) 110 ∗ 30–160 ∗ 50–264 ∗ 90 160*50
Non-dimensional time step DT=Tref 0:002→ 0:01 0.005
Time discretization scheme TO 1st order–2nd order 1st order

Physical parameters
Maximum slope of the barotropic law Amin (m=s) 1 m=s→ 4 m=s 1.44
Ratio �v=�l 0:001→ 0:1 0.01
Cavitation number � 2.32 (blockage)→ 2:52 (small cavity) 2.41
Parameter n of the turbulence model 5→ 20 10

sometimes observe some random disturbances a�ecting the oscillation cyclic behaviour. Our
whole computations suggest that, after the initial growing of the cavity is �nished, only a
couple of regular cycles can be obtained between two perturbations. These perturbations are
usually caused by a late implosion of the vapour cloud, which delays the growing of the
next cavity.
The in�uence of the number n value was investigated and results are given in the next

section. This parameter was found to have almost no in�uence on the self-oscillatory behaviour
of the sheet of cavitation, so far this behaviour is obtained, i.e. for values of n high enough
to give a quick decrease of the turbulent viscosity in the liquid–vapour mixture regions. The
value of n=10 was chosen for all the computations presented in the present paper.

5.3. Numerical tests

In�uence of numerical and physical parameters on the convergence rate and on the result is
tested in this section with the previous geometry. As the �nal cavity obtained is fundamentally
unstable, it cannot be characterized by its �nal shape or the �nal void ratio. The comparisons
are thus based on the transient evolution of the cavitating �ow. This evolution can be de�ned
at each time by the vapour quantity present in the domain or by the cavity shape (length,
volume). Since all these parameters have the same type of time evolution, we focus on the
vapour volume oscillations. For each computation, we calculate the time-averaged vapour
volume and its standard deviation. We also estimate the cavitation cycle frequency according
to the inlet pressure signal analysis. Results are considered after T=Tref = 5 to eliminate the
initial transient. Table I presents the parameters that were investigated, with their corresponding
range, and the reference value applied for the simulations in the next sections. The results of
the tests are presented in Table II.
Concerning the numerical parameters: The mesh obviously has a strong in�uence on the

result of the simulation: the �ner it is, the more the time-averaged vapour volume increases.
The standard deviation also strongly depends on the mesh size in the cavity area. Nevertheless,
its in�uence on the cloud shedding frequency is very weak, so far the mesh is �ne enough:
for a time-step DT=0:005Tref , we obtain 20% deviation between the coarsest mesh (110∗30)
and the reference one (160 ∗ 50), but this di�erence falls down to 2% between this mesh and
the �nest one (264 ∗ 90). The frequencies obtained with a smaller time-step (0.002) are also
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Table II. Results of the tests of the physical and numerical parameters in the case of the
8◦ Venturi type section.

Results

Mean vapour Oscillation Standard
Amin volume frequency deviation

� (m=s) �v=�l DT Mesh TO n (× 10−4 m3) (Hz) (× 10−4 m3)
Reference case

2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4

In�uence of the time step
2.4 2 0.01 0.002 160 ∗ 50 1 10 12.3 51 4.3
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.4 2 0.01 0.01 160 ∗ 50 1 10 9.3 55 2.7

In�uence of the mesh
2.4 2 0.01 0.002 264 ∗ 90 1 10 15.6 52 2.9
2.4 2 0.01 0.005 264 ∗ 90 1 10 14.5 54 4.3
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.4 2 0.01 0.005 110 ∗ 30 1 10 6.9 64 1.9

In�uence of the time order
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.4 2 0.01 0.01 160 ∗ 50 2 10 12.1 51 4.8
2.4 2 0.01 0.002 160 ∗ 50 2 10 13.4 51 4.5
2.4 2 0.01 0.002 264 ∗ 90 2 10 15.1 52 3.7

In�uence of the cavitation number
2.32 2 0.01 0.005 160 ∗ 50 1 10 123 17 32.9
2.34 2 0.01 0.005 160 ∗ 50 1 10 44.3 30 9.1
2.37 2 0.01 0.005 160 ∗ 50 1 10 19.7 41 5.8
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.44 2 0.01 0.005 160 ∗ 50 1 10 6.9 68 1.9
2.52 2 0.01 0.005 160 ∗ 50 1 10 4.4 82 1.6

In�uence of Amin
2.4 1 0.01 0.005 160 ∗ 50 1 10 9.7 54 3.6
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.4 3 0.01 0.005 160 ∗ 50 1 10 14.1 51 1.6
2.4 4 0.01 0.005 160 ∗ 50 1 10 14.8 43 1.9

In�uence of the parameter n
2.4 2 0.01 0.005 160 ∗ 50 1 7 11.4 55 2.2
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.4 2 0.01 0.005 160 ∗ 50 1 20 11.1 54 2.9

In�uence of the ratio �v=�l
2.4 2 0.001 0.005 160 ∗ 50 1 10 10.6 57 2.4
2.4 2 0.01 0.005 160 ∗ 50 1 10 11.0 55 2.4
2.4 2 0.1 0.005 160 ∗ 50 1 10 9.5 55 2.9

very close in the case of the two �nest meshes (4% deviation). We thus consider that the
unsteady cavitating �ow pattern is correctly simulated with the two �nest meshes.
The time-step in�uence appears to be strong so far it is not small enough: the di�erences

between the biggest one (0.01) and the reference one (0.005) are noticeable. A part of these
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discrepancies is surely due to the random disturbances that highly a�ect some of the com-
putations, and prevent us from performing clear and precise comparisons (these disturbances
are fully consistent with the experimental observations). The two smallest values (0.005 and
0.002) lead to closer results concerning the mean vapour volume (less than 10% deviation in
the case of the �nest meshes). The cavitation cycle frequency still oscillates around 50=55Hz,
which suggests that the in�uence of the time step cannot be completely removed.
This numerical in�uence of the time step on the results led us to investigate second-order

time-accurate simulations. Time step 0.01 was tested with the standard mesh, and then time
step 0.002 was tested with the standard and the �nest mesh. Although the mean vapour volume
and the standard deviation do not seem to become constant, they clearly remain of the same
order of magnitude. The oscillation frequency stabilizes around 51=52Hz, which is very close
to the result obtained with the �rst-order scheme (oscillation frequency between 51 and 55Hz).
It con�rms that dissipation induced by the �rst-order time integration scheme has only a little
in�uence on the vapour cloud shedding simulation. So this con�guration will be applied
hereafter with the time-step 0.005. The phenomenon frequency will be systematically slightly
over-estimated, but it must be considered that the random variations of the experimental
behaviour are of the same order of magnitude.
Concerning the physical parameters: An increase of Amin leads to a decrease of the slope

of the barotropic law. It induces a smoothing of the pressure gradients, and thus an increase of
the cavity thickness. The resulting vapour volume also increases. On the contrary, the standard
deviation is reduced, which can be related to the gradients smoothing: the dissipation in the
rear part of the cavity increases, and the cavitation sheet is stabilized. The reference value
of Amin(0:3 ∗ Uref ≈ 2 m=s) is chosen so that the thickness of the cavity is consistent with
experimental results, for several di�erent cavity lengths. This choice will be used in the
quantitative comparisons in the next paragraph.
The in�uence of the density ratio �v=�l appears very small: the vapour volume di�erence

between the case �v=�l = 0:001 and the case �v=�l = 0:01 is less than 4%. The di�erence is
more noticeable (14%) between the case �v=�l = 0:01 and the case �v=�l = 0:1. It suggests
that the in�uence of this parameter becomes negligible when it decreases below 0.01. So the
reference value 0.01 is chosen.
A large range of the cavitation number was investigated, and the code showed its ability to

simulate critical cavitating behaviours: even in the case �=2:32, which almost corresponds
to the blockage of the Venturi section, the computation goes on satisfactorily.
These tests validate the reference values for all the numerical parameters used here

after.

6. RESULTS IN THE 8◦ VENTURI TYPE SECTION

Computations have been carried out considering the 8◦ Venturi section, which presents an
unstable cavitation behaviour involving large cloud shedding. The con�guration is the one
presented in Section 4 and all the parameters are set to their reference value. We use
the modi�ed k–� turbulence model. Comparisons are �rst made with measured frequencies
(Figure 7) and experimental visualizations of the cavity shape (Plate 4), and a local validation
of the results is performed by comparison with experimental data obtained by optical probes
measurements within the cavitation sheet (Figure 8).
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Figure 7. Experimental and numerical oscillation frequency.

Figure 8. Time-averaged and standard deviation values of void ratio � and velocity u. Comparison
between numerical results (lines) and optical probes. Measurements (points)—Uref = 7:2m=s—modi�ed
k–� model, (Lcav)mean = 50 mm (cavity external shape in dotted line from image processing)—ratio 3

between vertical and horizontal scales.

6.1. Shedding frequency

From the results of Table II concerning the e�ect of the cavitation number, a comparison can
be proposed with results reported by Stutz [35]: the frequency of the self-oscillation behaviour
is drawn with respect to the ratio Vref =Lcav. The maximum length of the attached cavity given
by the numerical simulation is chosen as an estimation of the visual length reported from the
experiments. That length varies as the square root of the total time-averaged vapour volume.
It can be seen in Figure 7, that a good agreement can be found for a large range of cavitation
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Plate 1. Time evolution of the cavity length with a standard k–� turbulence model. The time is reported
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the density values: white for the pure liquid one and from red to dark blue for the vapour one. At a
given point in time and position, the colour indicates the minimum density in the corresponding cross
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Plate 2. Shape of the attached sheet cavity just before its break-o�. �num =2:4, 160 ∗ 50 mesh, velocity
vectors drawn only 1 cell over 2 in the two directions.
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Plate 3. Transient evolution of unsteady cavitating �ow in the 8◦ Venturi type duct. (a) Temporal
evolution (in abscissa) of the cavity length (graduated in ordinate) (Instantaneous attached and cloud
cavities at T =12Tref are given at left). (b) Time evolution of the volume of vapour in the �ow �eld.

(c) Time evolution of the inlet pressure: (Pinlet − Poutlet)=1=2�lU 2
ref .
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Plate 4. Numerical and experimental phase-averaged sequences of unsteady cavitation behaviour in the
8◦ divergent cavitation tunnel mean attached cavity length Lcav = 50 mm, Uref = 7:2.
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number and corresponding cavity length. Dividing the shedding frequency by the ratio Vref =Lcav
gives an almost constant Strouhal number 0:27± 0:02.

6.2. Description of the cavitation cycle

Two phase-averaged cavitation cycles are presented in Plate 4. The right one results from
experimental visualizations: Video frames acquired during a 100ns exposure time under Laser
sheet light are identi�ed and digitized in 256 grey levels. A sampling technique is applied to
classify them in nine sets corresponding to the di�erent states of the recorded quasi-periodic
pressure signal. Then, averaging the grey levels pixel per pixel for each set allows drawing a
sequence of phase-averaged images, from an initial data set of 300 frames. Maximum standard
deviation computed for each set is about 2=3 of the maximum mean grey level, and it is mainly
observed along the attached cavity and cloud boundaries.
The left part of the Plate 4 corresponds to the same sequence obtained by numerical sim-

ulation. This one lasts 20 Tref , i.e. about 30 cycles. The same sampling technique is applied:
the computational result is decomposed into 30× 9 short sequences corresponding to the nine
steps of the cavitation cycle and the phase-averaging process is applied. We observe a good
agreement between the two results concerning the external shape and global structure of both
attached cavity and vapour cloud shed.

6.3. Local comparison with optical probes measurements

The velocity u and the void ratio � are compared along four pro�les whose position was
indicated on Figure 5. The time-averaged and standard deviation values are represented in
Figure 8.
The mean void ratio in the upstream part of the cavity is quite small: only 25%, instead of

90% for the results obtained previously with the standard k–� model (Figure 6). Fluctuations
are very strong with a standard deviation value often larger than the time-averaged value.
The experimental velocity pro�les are rather irregular because of the great unsteadiness of

the cavitation sheet. Nevertheless good agreement can be noticed between experimental and
numerical pro�les of both time-averaged and �uctuation values of void ratio and velocity.
The presence of the periodic re-entrant jet is noticeable on these velocity pro�les whose
mean values are close to zero on about one-half of the cavity thickness above the wall.
Our simple modi�cation of the turbulence model had the expected e�ect: the viscosity

decreased in the reverse �ow area, and the re-entrant jet was strong enough to break-o� a
part of the cavity. It leads to a much more realistic behaviour and internal structure of the
cavitation sheet.

7. RESULTS IN THE 4◦ VENTURI TYPE SECTION

Computations were performed with the 4◦ divergent cavitation tunnel. The experimental
visualizations show in this case a quite stable cavity, with �uctuations mainly a�ecting the
downstream part, and only little vapour cloud shedding [20]. This behaviour is thus very
di�erent from the previous one, which makes this geometry an interesting complementary
test case for the numerical model, applied with exactly the same parameters. The inlet ve-
locity equals 10:8 m=s. Twenty Tref of simulation are performed with a standard 150× 50

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:527–548



544 O. COUTIER-DELGOSHA, J. L. REBOUD AND Y. DELANNOY

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 0.2 0.4 0.6
Lcav/Lref

σ

experimental results from
[Stutz, 1996]

numerical results

Figure 9. Numerical and experimental results Lcav(�).

mesh. The numerical parameters are set to their reference values, and Amin still equals 2 m=s
(i.e. 0:2×Uref ). We use for the simulations the modi�ed k–� model. The reverse �ow near
the wall is correctly predicted, and thus we obtain vapour cloud shedding. They are not as
large as in the 8◦ Venturi case, because the cavity thickness is smaller than in the previous
con�guration, and the cavity breaks o� at about its mean length. Only the downstream half
of the cavity is then convected and collapsed by the main liquid �ow (cf. Plate 5).
Several simulations were performed to check the accuracy of the model for a large range

of cavitation numbers. Each result is then averaged in time, to obtain the mean cavity length
Lcav. The resulting numerical law L(�) is compared to an experimental one (see (Stutz, 1996))
in the Figure 9. We obtain a very good agreement of the mean cavity lengths, which con�rms
the ability of the model to provide an accurate prediction of the global cavitating behaviour.
Calculations corresponding to short cavities are not reported here: stable cavities are obtained
as with the standard k–� turbulence model, their length being then much too small. It suggests
that the modi�cation proposed in the turbulence modelling is not completely e�cient with
this Venturi type section, in which the cavitation behaviour is neither completely stable, nor
regularly unstable.
Local comparisons with experimental results inside the cavity are presented hereafter. The

experimental data are obtained by double optical probes measurements (see Section 5). The
simulation corresponds to a cavitation number �=0:7. The data pro�les position is presented
in Figure 10.
Comparisons between numerical pro�les and experimental ones are presented in Figure 11.

The cavity shape is in good agreement with the experimental one. The void ratio in the
upstream part of the cavity is much larger than in the previous con�guration: 80% for the
�rst pro�le, instead of 25% in the other Venturi case. The mean values are particularly close
to experimental data, and the standard deviation values are also correctly predicted, even if
they are a little over-estimated above the cavity. The velocity pro�les are also satisfactory.
Despite the rather stable behaviour observed during experiments, a mean reverse �ow can be
noticed along the whole cavitation sheet. It results in a complex two-phase structure inside the
cavity, detailed in Reference [20]. The good general agreement obtained has to be associated
with the unsteady behaviour predicted by the numerical model.
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Figure 10. Data pro�les position and mean external shape of the cavity
(modi�ed k–� RNG turbulence model).

Figure 11. Time-averaged and standard deviation values of void ratio � and velocity u. Comparison
between numerical results (lines) and optical probes measurements (points). Uref = 10:8 m=s—modi�ed
k–� model, (Lcav)mean = 80 mm (cavity external shape in dotted line from image processing). Ratio 3

between vertical and horizontal scales).

The di�erences between the two turbulence models (standard or modi�ed k–� model) are
illustrated by Plate 6, which shows the time-averaged turbulent viscosity �eld and the reverse
�ow near the Venturi bottom in the two cases. Actually, we observe after the modi�cation
a great decrease of the viscosity in the downstream part of the cavity, associated with the
appearance of a reverse �ow near the wall. It con�rms that the over-prediction of the viscosity
in the standard turbulence model case is responsible for the complete stabilization of the
cavity. A more detailed study is necessary to further investigate the physical mechanisms that
a�ect the turbulence in highly compressible media and during the vapourization=condensation
phenomena.
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8. CONCLUSION

A 2D model for unsteady cavitation was presented in this paper. Simulations were performed
on two Venturi type sections, characterized by divergence angles of 4 and 8◦.
The unsteady behaviour of the cavitating �ow depends strongly on the turbulence model,

and it has a great e�ect on the mean and �uctuating �elds of void ratio and velocity in the
cavity. The standard k–� RNG model leads in the two geometries to quasi-steady cavitation
sheets, whose length is under-estimated with respect to visual observations, velocity and void
ratio �elds within the cavity showing a poor agreement with experimental measurements.
A simple modi�cation of the turbulence model was proposed to reduce the e�ective viscos-

ity in the mixture. Further investigations presented in Reference [30] have showed that this
modi�cation consists of taking into account the in�uence of the liquid=vapour mixture high
compressibility on the turbulence structure. Nevertheless, the present reduction of viscosity in
the two-phase areas remains interesting in itself, because it allows very simple modi�cations
of existing numerical codes, without the implementation of a new turbulence model.
Good agreement with measurements was then obtained: the self-oscillation behaviour of

cavitation observed in the case of the Venturi with a 8◦ divergence angle is correctly simulated,
with a good estimation of the vapour cloud shedding frequency. In�uence of the model
and computation parameters has been widely studied. In the Venturi with a 4◦ divergence
angle, an unsteady behaviour is also obtained, with smaller amplitude of the cloud shedding
phenomenon. In the two geometries, averaged and RMS values of void ratio and velocities
inside the cavity are then consistent with the experimental data. Thus, the proposed model
was found to simulate e�ciently as well pronounced unsteady behaviours with large vapour
cloud shedding (Venturi 8◦) as more stable con�gurations with �uctuations a�ecting only the
rear part of the cavity (Venturi 4◦).

NOMENCLATURE

Amin minimum speed of sound in the mixture (m=s)
Cp (P − Pref )=1=2�lU 2

ref pressure coe�cient (dimensionless)
Lref ‘Chord’ length of the Venturi pro�le (m)
P local static pressure (Pa)
Pref reference pressure= inlet mean static pressure (Pa)
Ptot total pressure=P + 1=2�lU 2

ref (Pa)
Pvap vapour pressure (Pa)
P0 Coe�cient in the Tait state law (Pa)
T time (s)
Tref Lref =Uref = reference time (s)
Uref reference velocity = inlet �ow velocity (m=s)
V control volume (m3)
� local void fraction (dimensionless)
� dynamic laminar viscosity (Pa.s)
�t dynamic turbulent viscosity (Pa.s)
� ��v + (1− �)�l local density of the mixture (kg=m3)
�v vapour density (kg=m3)
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�l liquid density (kg=m3)
� (Pref − Pvap)=1=2�lU 2

ref cavitation number (dimensionless)
�num numerical cavitation number (dimensionless)
�exp experimental cavitation number (dimensionless)
U mixture velocity: 2D vector, of component (ux; uy) in the Cartesian orthonor-

mal �xed frame, or (u; v) in the local frame associated with the curvilinear
orthogonal mesh (m=s, m=s)
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